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About this

This is a book on the essential components of creating an R package. It is
aimed at those who want to learn how to make R packages. You probably
have written some functions, but if you haven’t, we discuss how to do that. I
care a lot about writing functions, and have a lot of thoughts and ideas on
how to do it.

It was initially developed as a full-day hour workshop, “R package essentials”.
It is a developed into a resource that will grow and change over time as a
living book.

This book aims to teach the following:

o Installation and setup of dependencies
— git + github
— R, RStudio
— package dependencies
o Function essentials
— DRY;DRY (Don’t Repeat Yourself; Don’t Reread Yourself)
— Expression
— Finding the inputs
e Moving a script to a series of functions
o Create package barebones with create_package ()
o How to add dependencies with use_package () - DESCRIPTION file
¢ How to add documentation with roxygen2
e Why you should use R CMD Check
¢ How to add data to a package
¢ How to add a README
e How to put your package on github
e« How to add vignettes
o Writing tests
e Using a NEWS file
e Adding a website
¢ Using Continuous Integration to check and test
o Publishing your software on R universe


https://rpkgess.njtierney.com/




Getting course materials

Course materials are in the github repository njtierney/learned. These can be
downloaded by using the following command from the usethis package:

usethis: :use_course("njtierney/learned")

Licence

This work is licensed under a Creative Commons Attribution-NonCommercial
4.0 International License.


https://github.com/njtierney/learned




License

This work is licensed under a Creative Commons Attribution-NonCommercial
4.0 International License.
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1

Philosophy

I first learnt to write an R package from [Hilary Parker’s famous blog post,
“Writing an R package from scratch”. Then I consulted Hadley Wickham’s
“R packages” book (1st edition). I consider the “R packages” book (now in
its second edition, by Hadley Wickham and Jenny Bryan), to be the author-
ity on best practices for package development, alongside the rOpenSci guide,
“rOpenSci Packages: Development, Maintenance, and Peer Review”.

These are excellent pieces of reference test, however I think there is a need for
a resource that sits somewhere between a blog post on making an R package,
and resource. I want something that contains just enough information to get
you started on the right path to making an R package. This is what that book
represents to me. Along the way I'll include breadcrumbs to other resources
to look into when you want to learn more.

This book also represents my efforts to explain the key parts of what I think
people should know about how to write functions, and also to format this in
a teachable way that can be covered in a single workshop.

So, why write a book?

Similar to my book, “Quarto for Scientists”, writing this as a book provides a
nice way to structure the content in the form of a workshop, in a way suitable
for learning in a day. It is not to say that there aren’t already the resources
out there; there are. It is instead adding to the list of other (useful, hopefully!)
information out there on the internet. To answer a question with another
question: “Why NOT write this as a book?”
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https://r-pkgs.org/
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2

Installation

In this section, the aim is to have everyone setup with R, RStudio, the tools

you need to build an R package, and git.

2.1 Overview

e Duration 15 minutes

2.2 Questions

e How do I install R?

¢ How do I install RStudio
— What about Positron?

e« How do I install git?

e How do I install RTools?

2.3 Software Setup

2.3.1 Installing R

2.3.1.1 Windows
https://cloud.r-project.org/bin/windows/

2.3.1.2 MacOS

https://cloud.r-project.org/bin/macosx/

15
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2.3.1.3 Linux
https://cloud.r-project.org/bin/linux/

2.3.2 Installing RStudio
https://posit.co/download /rstudio-desktop/#download

2.3.3 Installing R packages for development

To ensure you are up to date, run the following script to install the packages.

install.packages(c("devtools", "roxygen2", "testthat", "knitr", "pak"))

2.3.3.1 Personalising your R Profile

This is really neat, and I think it’s actually worthwhile doing, but it does take
up some time, and there are some warnings.

As you develop R packages, you'll need to go through a cycle of restarting R,
and loading things up to be ready. One of the issues with this is that you’ll
find yourself writing code like:

library(devtools)

A lot. To save you time, we can edit a very special file called “The R profile”,
which is saved as .RProfile. This code is special, and awesome, because it is
run every time you start R. It is also dangerous, for exactly the same reason.

I recommend running the following code from devtools to help set this up:

use_devtools()

Which will bring up the following message:

Include this code in .Rprofile to make devtools
available in all interactive sessions:
if (interactive()) {
suppressMessages (require(devtools))
b
[Copied to clipboard]
Modify /Users/nick/.Rprofile.
Restart R for changes to take effect.

So, copy and paste the above, which I will now explain. There are three parts
to this that I will break down:

require(devtools)

we usually recommend writing library(devtools), but in this instance,


https://cloud.r-project.org/bin/linux/
https://posit.co/download/rstudio-desktop/#download
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require is what we want, because if the package is not installed, require
will throw a warning, rather than an error:

# warn
require(whatevenisthis)

Loading required package: whatevenisthis

Warning in library(package, lib.loc = 1lib.loc, character.only = TRUE,
logical.return = TRUE, : there is no package called 'whatevenisthis'

# error
library(whatevenisthis)

Error in library(whatevenisthis): there is no package called 'whatevenisthis'

We do not want an error when we start R, it is annoying.

suppressMessages ()

This code suppresses any messages that appear from running this code, which
again, we want, because we don’t (generally) want our R session to announce
something upon startup.

if (interactive()) {
suppressMessages (require(devtools))

}

This means that this code is only run if the R session is interactive. This always
felt a bit strange to me - because I had only ever run R interactively. But you
don’t want to run require(devtools) when we aren’t using R interactively,
because it means we are potentially changing the state of things. Essentially,
it’s good practice.

Also, here are a couple of times that you might not realise you are using R
non-interactively:

e rendering a document using quarto or rmarkdown
e building an R package (which you’ll learn about later)

You also use R non-interactively when you are running Rscript in the com-
mand line.

Finally, another bit of useful code in your R profile is something like this:

# usethis options
options(
usethis.full_name = "Nicholas Tierney",
usethis.protocol = "https",
usethis.description = list(
“Authors@R™ = '
c(
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person(
given = "Nicholas",
family = "Tierney",
wele = e(Ten”,, Yea™)
email = "nicholas.tierney@gmail.com",
comment = c(ORCID = "https://orcid.org/0000-0003-1460-8722")
)
i
License = "MIT + file LICENSE",
Language = "en-GB",
Version = "0.0.0.9000"

),
# set SI to true
reprex.session_info = TRUE

)

This helps when setting up your R package for the first time, to make sure
you set up your DESCRIPTION file. It isn’t required, but it is neat, and I
think worthwhile.

Because I need to set these things up on different laptops sometimes, I actually
write all these files to github. They are typically called “dotfiles” - you can
see mine at http://github.com/njtierney/dotfiles.

2.3.4 git and github

Very briefly, git is essentially a way of managing versions and changes. You
can think of it like a product such as dropbox, but with super powers. You
can go back in time, you can make copies for changing, and delicately and
precisely mege them back in, or leave them where they are.

Your software needs a home. You'll typically start with your project on your
laptop or computer. GitHub is where you can store it online. The benefits to
sharing your work on github are many, but my personal top reasons are:

e Build trust in your software. If the community can see your code, they can
trust it better.

e Provides a way to log ideas and bugs via issues.

e Provides a way for the community to contribute to your code.

My favourite book on using git and github with R is the book “happy git with
R” By Jenny Bryan, Jim Hester, and the Stat 545 TAs. Honestly, it’s hard to
recommend better installation instructions than their battle tested ones, so
T’ll point you to this resource in case you run into troubles here.


http://github.com/njtierney/dotfiles
https://happygitwithr.com/
https://happygitwithr.com/
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2.3.4.1 setting up github

Getting set up on github you need an account. It’s easy enough to set up
- go to https://github.com/ . When picking a username, I recommend the
following:

Keep it short. jsmith is better than jonathansmith.
Avoid numbers and jokes. jsmith is better than jsmith123
Keep it professional. jsmithisthebest

Keep it lowercase DONOTSHOUT

> N

2.3.4.2 installing git

Installing git can sometimes be a challenge. This is largely because sometimes
there are small differences that arise to install windows vs mac vs linux. Or
sometimes there are issues with work computers with strong permissions.

Generally, you should install git from: https://git-scm.com/downloads

But, if you encounter issues, I would advise checking out the battle-tested
instructions at: https://happygitwithr.com/install-git.

Once you've installed git, I recommend running this:

usethis: :git_vaccinate()

Which ensures that you ignore specific files (specifically, Rproj.user, .Rhistory,
.Rdata, .httr-oauth, .DS_Store, and .quarto). This is important because it
decreases your chances of leaking credentials or other important details to
GitHub.

2.3.4.3 The “git handshake”

In order for your computer to talk to git and github properly, it needs to know
three things:

1. Name
2. Email
3. Credentials

git needs to know your name and email - this should be the name and email
you used to set up your github account. Set this up with use_git_config()

library(usethis)

use_git_config(
user.name = "Ned Kelly",
user.email = "ned@example.org"

)

github needs a personal access token - this is so you can talk to github from


https://github.com/
https://git-scm.com/downloads
https://happygitwithr.com/install-git
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R. This becomes really handy, and dare I say it, nearly magical later on. To
get this, run:

usethis: :create_github_token()

This will open up GitHub and create a Personal Access Token. If this doesn’t
work, go to https://github.com/settings/tokens and click “Generate New To-
ken”, and select the (classic).”

Generally speaking you want the following scopes selected:

° “repoﬁ
° “user77
o “workflow”.

A token will be created - keep this page open, and copy the token to your
clipboard.

Then, go to R, and run:
gitcreds: :gitcreds_set()

And paste this PAT code in. Then, verify all of this with:
usethis::git_sitrep()

2.3.5 Installing RTools

This is actually something that you only need to do if you want to use C
or C++ with your R package, which isn’t something you need to do for this
course. To read more on this, see “The R build toolchain” from the R Packages
book.


https://github.com/settings/tokens
https://r-pkgs.org/setup.html#setup-tools

3
RStudio, What and Why

(This section is also in my other book, “Quarto for Scientists”)

3.1 Overview

e Teaching 5 minutes
« Exercises 2 minutes

3.2 Questions

e What is RStudio?
e Why should I use RStudio?
o What features should I change?

3.3 Objectives

e Get familiarised with RStudio
o Get set up with not storing the RStudio workspace
¢ Download the course materials for the workshop

3.4 What is RStudio, and why should I use it?

If R is the engine and bare bones of your car, then RStudio is like the rest
of the car.

21
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The engine is super critical part of your car. But in order to make things
properly functional, you need to have a steering wheel, comfy seats, a radio,
rear and side view mirrors, storage, and seatbelts. RStudio is all those niceties

The RStudio layout has the following features:

e On the upper left, the Quarto script

e On the lower left, the R console

¢ On the lower right, the view for files, plots, packages, help, and viewer.
e On the upper right, the environment / history pane

eoce ‘amdasci-materials - master - RStudio

© - Oyl Go o fle/function § - - Addins ~ % gmdésci-materials — njtierney ~

[] Files Plots Packages Help Viewer Presentation =

03-qmd-Im-tables-inline-eqn.qmd - & gitignore eda-document.qmd
o ¥ /% Publish ~

RenderonSave ' (4 Render - @ -HRun - | G-  Zoom | -3 Export ~
Source | Visual Outline

106~ " " "
13? Histogram of gapminder$gdpPercap

108~ " {r} > >
109 label: -gg-oz-plot g o
110 fig-cap: -Life expectancy from 1952 - 2007 for Australia. % 8 3 rl_‘—
Life expentancy increases [,
111 steadily except from 1962 to 1969. We can safely say w T T T T I T 1
that our life expectancy is 0 20000 40000 60000 80000 100000 120000
112 higher than it has ever been!
113 library(ggplot2 gapminder$gdpPercap

114 library(dplyr

115 gapminder %>%
Environment  History ~Connections  Git Tutorial =

116 - -filter(country = "Australia") %%
117 ggplot(aes(x- = year, g  Import Dataset - * 208 Mig - & List ~
118 y = lifeExp)) + R - % Global Environment -
119 - -geom_point Dot
120~ ° ry
ot bot_gap 10 obs. of 6 variables
129:1  E3 References = Quarto = fit List of 12
Console  Terminal - Background Jobs =01 Ofit_coef 2 obs. of 5 variables
R R4.4.0 - ~/github/njtierney/qmddsci-materials/ gapminder 1704 obs. of 6 variables
TR ML Al ISkt L ittt AGA R y -
|year | 0.3259038| 0.0163237| 19.96509] o top_gap 10 obs. of 6 variables
> Values
> # Chunk 11 x 8
> 141 year_slope 0.326
(112 Functions
>
scale_01 function (x)

>X & 1+1+6
>

Figure 3.1: A screenshot of the RStudio working environment.

We saw a bit of what an Quarto script does.

e The R console is the bit where you can run your code.

o The file/plot/package viewer is a handy browser for your current files, like
Finder, or File Explorer.

o Plots are where your plots appear, you can view packages, see the help files.

e The environment / history pane contains the list of things you have created,
and the past commands that you have run.

1 Your Turn: RStudio default options

To first get set up, I highly recommend changing the following setting
Tools > Global Options (or Cmd + , on macOS)
Under the General tab:



3.4 What is RStudio, and why should I use it?

Options

e For workspace:
— Uncheck restore .RData into workspace at startup.
— Save workspace to .RData on exit : “Never”.
e For History:
— Uncheck “Always save history (even when not saving .RData).
— Uncheck “Remove duplicate entries in history”.

|" General

Code
> Console
q] Appearance
Pane Layout
| Packages
R Markdown
e Python
@~ sweave

ABC

7 Spelling

@ cit/swN

.f.:’ Publishing

. Terminal

ﬁ Accessibility

O Copilot

m Graphics Advanced

R Sessions

Default working directory (when not in a project):

{~ J Browse...

v Restore most recently opened project at startup

v|Restore previously open source documents at startup

Workspace

Restore .RData into workspace at startup:
Save workspace to .RData on exit:
History

Always save history (even when not saving .RData)

Remove duplicate entries in history

Other
v|Wrap around when navigating to previous/next tab
v/ Automatically notify me of updates to RStudio

Send automated crash reports to RStudio

OK Cancel Apply

reasons

Figure 3.2: Setting the options right for RStudio, so you don’t restore
previous sessions work, and don’t save it either.

This means that you won’t save the objects and other things that you
create in your R session and reload them. This is important for two

1. Reproducibility: you don’t want to have objects from last
week cluttering your session

23
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2. Privacy: you don’t want to save private data or other things
to your session. You only want to read these in.

Your “history” is the commands that you have entered into R.
Additionally, not saving your history means that you won’t be relying

on things that you typed in the last session, which is a good habit to
get into!

3.5 Learning more

¢ RStudio IDE cheatsheet


https://github.com/rstudio/cheatsheets/blob/main/rstudio-ide.pdf

4
Worktlow

(Note that this section is borrowed from my book, Quarto for Scientists: “work-
flow”)

Before we start with Quarto, we need to make sure that you understand
file storage hygiene.

We can prevent unexpected problems if we can maintain an order to your
files, paths, and directories. A common problem that arises is R not knowing
where a certain file is. For example, we get the error:

read.csv("my-very-important-data-file-somewhere.csv")

Warning in file(file, "rt"): cannot open file
'my-very-important-data-file-somewhere.csv': No such file or directory
Error in file(file, "rt"): cannot open the connection

Because R doesn’t know where "my-very-important-data-file-somewhere.csv"
is.

Practicing good file storage hygiene will help maintain an order to files, paths,
and directories. This will make you more productive in the future, because
you’ll spend less time fighting against file paths.

Not sure what a file path is? We explain that as well.

4.1 Overview

e Teaching 10 minutes
« Exercises 10 minutes

25
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4.2 Questions

e Where should I put all my files?
o What is an RStudio project, anyway?
e What is a file path?

4.3 Objectives

e Understand what a file path is
e Set up an RStudio Project to organise your work
¢ Put some data in your project to set up the next tasks

i Your Turn

In groups of 2-4 discuss:

1. What your normal “workflow” is for starting a new project

2. Possible challenges that might arise when maintaining your
project

4.4 When you start a new project: Open a new RStudio
project

This section is heavily influenced by Jenny Bryan’s great blog post on project
based workflows.

Sometimes this is the first line of an R Script or R markdown file.

setwd("c:/really/long/file/path/to/this/directory")

@ Question

What do you think the setwd code does?

4.4.1 So what does this do?

This says, “set my working directory to this specific working directory”.


https://www.tidyverse.org/articles/2017/12/workflow-vs-script/
https://www.tidyverse.org/articles/2017/12/workflow-vs-script/
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It means that you can read in data and other things like this:

data <- read_csv("data/mydata.csv")

Instead of
data <- read_csv("c:/really/long/file/path/to/this/directory/data/mydata.csv")
So while this has the effect of making the file paths work in your file, it

is a problem. It is a problem because, among other things, using setwd () like
this:

o Has 0% chance of working on someone else’s machine (this could include
you in 6 months!)

¢ Your file is not self-contained and portable. (Think: “What if this folder
moved to /Downloads, or onto another machine?”)

So, to get this to work, you need to hand edit the file path to your machine.
This is painful.
When you do this all the time, it gets old, fast.

4.5 What is a file path?

This might all be a bit confusing if you don’t know what a file path is. A file
path is the machine-readable directions to where files on your computer live.
So, the file path:

/Users/njtierney/Desktop/qmd4sci-materials/demo.R
Describes the location of the file “demo.R”. This could be visualised as:

users
njtierney
Desktop
gqmd4sci-materials
demo.R << THIS IS THE FILE HERE
exercises
exploratory-data-analysis
eda-document.qgmd
eda-script.R
data
gapminder.csv

So, if you want to read in the gapminder.csv file, you might need to write
code like this:
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gapminder <- read_csv("/Users/njtierney/Desktop/qmd4sci-materials/data/gapminder.csv")

As we now know, this is a problem, because this is not portable code. It is
unlikely someone else will have the gapminder.csv data stored under the
folders, "Users/njtierney/Desktop".

If you have an RStudio project file inside the qmd4sci-materials folder, you
can instead write the following:

gapminder <- read_csv("data/gapminder.csv")

i Your Turn

e (1-2 minutes) Imagine you see the following directory path:
"/Users/miles/etc1010/weekl/data/health.csv" what are the
folders above the file, health.csv?

e What would be the result of wusing the following code in
demo-gapminder.qmd, and then using the code, and then moving this
to another location, say inside your C drive?

setwd("Downloads/etc1010/weekl/weekl.qmd)

4.6 Is there an answer to the madness?
This file path situation is a real pain. Is there an answer to the madness?
The answer is yes!

I highly recommend when you start on a new idea, new research project, paper.
Anything that is new. It should start its life as an rstudio project.

An rstudio project helps keep related work together in the same place.
Amongst other things, they:

e Keep all your files together.

e Set the working directory to the project directory.

o Starts a new session of R.

¢ Restore previously edited files into the editor tabs.

¢ Restore other rstudio settings.

e Allow for multiple R projects open at the same time.

This helps keep you sane, because:

¢ Your projects are each independent.
e You can work on different projects at the same time.
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¢ Objects and functions you create and run from project idea won’t impact
one another.

e You can refer to your data and other projects in a consistent way.

And finally, the big one:

RStudio projects help resolve file path problems, because they auto-
matically set the working directory to the location of the rstudio project.

Let’s open one together.

1 Your Turn Use your own rstudio project

1. In RStudio, and run the following code to start a new rstudio
project called “gmd4sci-materials”.

usethis: :use_course("njtierney/qmd4sci-materials")

2. Follow the prompts to download this to your desktop and then
run the rstudio project. (You can move it later if you like!)
3. You are now in an rstudio project!

1 Your Turn: open the demo.R file

1. Run the code inside the demo.R file

2. Why does the read_csv code work?

3. Run the code inside the exploratory-data-analysis folder
- eda-script.R.

Does the read_csv code work?

Run the code inside the exploratory-data-analysis folder
- eda-document.qgmd, by clicking the “render” button (we’ll
go into this in more detail soon!)

6. Does it work?

ot

4.7 The “here” package

Although RStudio projects help resolve file path problems, in some cases you
might have many folders in your r project. To help navigate them appropri-
ately, you can use the here package to provide the full path directory, in a
compact way.
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here: :here("data")

returns
[1] "/Users/nick/github/njtierney/qmd4sci-materials/data"
And

here: :here("data", "gapminder.csv")

returns
[1] "/Users/nick/github/njtierney/qmd4sci-materials/data/gapminder.csv"

(Note that these absolute file paths will indeed be different on my computer
compared to yours - super neat!)

You can read the above here code as:

In the folder data, there is a file called gapminder.csv, can you please
give me the full path to that file?

This is really handy for a few reasons:

1. It makes things completely portable

2. Quarto documents have a special way of looking for files, this helps
eliminate file path pain.

3. If you decide to not use RStudio projects, you have code that will
work on any machine

4.8 Remember

If the first line of your R script is
setwd ("C:\Users\jenny\path\that\only\I\have")

I will come into your office and SET YOUR COMPUTER ON FIRE .
— Jenny Bryan

O Aside: Creating an RStudio project

You can create an Rstudio project by going to:

file > new project > new directory > new project > name your project
> create project.

You can also click on the create project button in the top left corner
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° v;vv j| & Go to fle/function % < [ - Addins -

Source a0

Console  Terminal - Background Jobs. )

R RA4.4.0 . ~/github/njtierney/qmd4sci-materials/

R version 4.4.0 (2024-04-24) -- "Puppy Cup"

Copyright (C) 2024 The R Foundation for Statistical Computing

Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

>

Then go to new directory, if it is a new folder - otherwise if you have an
existing folder you have - click on existing directory.

New Project Wizard

Create Project

R New Directory
Start a project in a brand new working directory >
Existing Directory N

W | ssociate a project with an existing working directory

Version Control
Checkout a project from a version control repository >

Cancel

Then go to new project

New Project Wizard

Back Project Type

=

New Project

R Package

"

Shiny Application

o

Quarto Project
' Quarto Website

« Quarto Blog

vV vV Vv v v v v

B Quarto Book
Cancel

Then write the name of your project. I think it is usually worthwhile
spending a bit of time thinking of a name for your project. Even if it is
only a few minutes, it can make a difference. You want to think about:
o Keeping it short.

e No spaces.

e Combining words.

For example, I had a project looking at bat calls, so I called it screech,
because bats make a screech-y noise. But maybe you’re doing some
global health analysis so you call it “world-health”.

And click “create project”.
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New Project Wizard

Back Create New Project
Directory name:
[world-heatr| ]
Create project as subdirectory of:
< [/Usarslni(klgi(hub/nj!iamey ] Browse...

/ Create a git repository

| Use renv with this project

~/Open in new session Create Project Cancel

4 Workflow
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Summary

In this lesson we’ve:

e Learnt what file paths are
e« How to setup an rstudio project
e How to construct full file paths with the here package
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Why functions?

At their core, an R package is a way to share code. The way we share that
code is primarily through R functions. There is a lot about the mechanics, and
the tools to create and write R packages, but what I want to communicate
here is the what, why, when, and how of using functions.

6.1 Overview

o Teaching 20 minutes
« Exercises 15 minutes

6.2 Questions

¢« What is a function?

e Why should I use a function?
e When should I use a function?
e How do I create a function?

6.3 Objectives

e Understand why functions should be used
e Understand when do use functions
¢ Understand how to write functions

35
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6.4 Prior Art

There’s a lot of work and thought that’s gone into writing functions. A lot
of my own understanding of this has been informed by others, and I want to
make sure I properly acknowledge them:

¢ Joe Cheng: You have to be able to reason about it

o Hadley Wickham’s ‘Many Models’ talk

o Hadley Wickham’s ‘The design of everyday functions’
¢ Miles Mcbain’s ‘Our colour of magic’

e Jenny Bryan’s ‘Code Smells and Feels’

¢ Roger Peng’s ‘From tapply to Tidyverse’

¢ Advanced R: Functions

e Tidy Design Principles

o Lexical Scope and Statistical Computing

e stat545 chapter on functions

These are all well worth the time reading, or watching these. If I had to pick

two of the most influential, I would say:

1. Hadley Wickham’s “Many Models” talk, and
2. Jenny Bryan’s “Code Smells and Feels”

6.5 Code is for people
If T could have you walk away with one key idea, it would be this:

Functions are tools to manage complexity that allow us to reason with and
understand our code.

In essence, code is for people. This stems from a famous (well, I think it’s
famous), quote:

[W]e want to establish the idea that a computer language is not just a way
of getting a computer to perform operations but rather that it is a novel
formal medium for expressing ideas about methodology. Thus, programs
must be written for people to read, and only incidentally for
machines to execute.

— Structure and Interpretation of Computer Programs. Abelson, Suss-
man, and Sussman, 1984.


https://www.youtube.com/watch?v=J8qbRYa4430
https://www.youtube.com/watch?v=rz3_FDVt9eg
https://www.youtube.com/watch?v=Qne86lxjgtg
https://www.youtube.com/watch?v=ywK4qs5dJsg
https://www.youtube.com/watch?v=7oyiPBjLAWY
https://www.youtube.com/watch?v=5033jBHFiHE&t=1s
https://r4ds.had.co.nz/functions.html
https://design.tidyverse.org/
https://www.stat.auckland.ac.nz/~ihaka/downloads/lexical.pdf
https://stat545.com/functions-part1.html
https://mitpress.mit.edu/9780262510875/
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6.6 OK, but what actually is a function?
Going back to my quote:

Functions are tools to manage complexity that allow us to reason with and
understand our code.

I actually think before we talk about the anatomy, the what. We first must
discuss why functions.

A function is something that helps us manage complexity. You can think about
this as something that allows us to repeat certain tasks. Kind of like how a
robot, or a manufacturing line can repeat manual tasks.

Let’s say we had some data on age groups - the number of contacts these
people record on a given day.

options(tidyverse.quiet=TRUE)

library(tidyverse)

contact <- tibble(
location = rep(c("QLD", "NSW"), 3),
age_groups = c("15-19", "15--19", "20--24", "20-24", "25---29",
n_contacts = c(100, 125, 150, 200, 225, 250)

)

contact

# A tibble: 6 x 3
location age_groups n_contacts

<chr> <chr> <dbl>
1 QLD 15-19 100
2 NSW 15--19 125
3 QLD 20--24 150
4 NSW 20-24 200
5 QLD 25---29 225
6 NSW 25-29 250

We want to produce a plot of age groups and the number of contacts.

But, we can’t do this, because there are all these different ways of representing
“age_ group”.

ggplot(
contact,

aes(x = age_groups,
y = n_contacts)) +
geom_col ()

||25_29||) R
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Well rather, we CAN do this, but we want to get the totals of each age group.

What we want out of this is them all to be separated out by an underscore
“_“ and turned into a factor:

library(stringr)
tidy_contact <- contact |>
mutate(
age_groups = str_replace_all(
string = age_groups,
pattern = "
replacement = "_"
),
age_groups = as.factor(age_groups)

)

n
B

tidy_contact

# A tibble: 6 x 3
location age_groups n_contacts

<chr> <fct> <dbl>
1 QLD 15_19 100
2 NSW 15_19 125
3 QLD 20_24 150
4 NSW 20_24 200
5 QLD 25_29 225
6 NSW 25_29 250
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And then we can plot this:

ggplot(
tidy_contact,

aes(x = age_groups,
y = n_contacts)) +
geom_col ()

400 -
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c
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©|200-
c

100 -

0 -

1 1 1
15 19 20_24 25_29
age_groups

Sure, job done.

But now we have some new data, this one contains similar information, but
it has population data that we need to join onto it so we can get proportion
information.

population <- tibble(
location = rep(c("QLD", "NSW"), 3),
age_groups = c("15--19", "15-19", "20---24", "20-24", "25-29", "25--29"),
population = c(319014, 468550, 338824, 540233, 370468, 607891)

)

population

# A tibble: 6 x 3
location age_groups population

<chr> <chr> <dbl>
1 QLD 15--19 319014
2 NSW 15-19 468550

3 QLD 20---24 338824
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4 NSW 20-24 540233
5 QLD 25-29 370468
6 NSW 25--29 607891

And this is why I think you should write a function.

We want to encapsulate the idea of cleaning up age group. That is: “clean
age groups”. So let’s write a function that captures this idea.

clean_age_groups <- function(age_groups){

age_underscore <- str_replace_all(
string = age_groups,
pattern = "-———|-——[-",
replacement = "_"

)

as.factor(age_underscore)

}

And this is the difference in the worflow, for each of these, script, or function
tidying up processes:

6.7 script

tidy_contact <- contact |>
mutate (

age_groups = str_replace_all(
string = age_groups,
pattern = "———|-——|-",
replacement = "_"
D¢

age_groups = as.factor(age_groups)

)

tidy_population <- population |>
mutate(
age_groups = str_replace_all(
string = age_groups,
pattern = "-——|-——|-",
replacement = "_"

),

age_groups = as.factor(age_groups)
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tidy_proportion <- tidy_contact |>

left_join(tidy_population,

mutate (proportion

by = c("location", "age_groups"))
n_contacts / population)

tidy_proportion

| >

location age_groups n_contacts population proportion

# A tibble: 6 x 5

<chr> <fct>
1 QLD 15_19
2 NSW 15_19
3 QLD 20_24
4 NSW 20_24
5 QLD 25_29
6 NSW 25_29
———

<dbl>
100
125
150
200
225
250

<dbl>
319014
468550
338824
540233
370468
607891

0
0
0
0
0
0

<dbl>

.000313
.000267
.000443
.000370
.000607
.000411

6.8 function

clean_age_groups <- function(age_groups){

age_underscore <- str_replace_all(
string = age_groups,
pattern = "-———|-——[-",
replacement = "_"

)

as.factor(age_underscore)

}

tidy_contact <- contact |>

mutate(

age_groups = clean_age_groups (age_groups)

)

tidy_population <- population |[>

mutate(

age_groups = clean_age_groups (age_groups)
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tidy_proportion <- tidy_contact |>
left_join(tidy_population,
by = c("location", "age_groups")) |[>
mutate(proportion = n_contacts / population)

6.8.1 Functions give ideas a home

Functions provide a way to express the idea of what we want to do. They
also provide your ideas a home. What if the data changes? Do you want to go
back and change each line of code? No! You can update the function in one
place, and then repeat it again.

Once you start writing functions to do things, they will start to be little
repositories of knowledge. Little shortcuts that you can use to just remember
the most important part.

Now, on to the anatomy of functions

6.9 Anatomy of a function

Now, to speak about the mechanics of writing functions: a function is com-
posed of three parts:

1. Name
2. Arguments
3. Body

To look at our clean_age_groups function again, we can see the following:

# The name of the function
clean_age_groups <- function(age_groups){ # The argument - age_groups

# The body of the function
age_underscore <- str_replace_all(
string = age_groups,
pattern = "-——|-——|-",
replacement = "_"

)

# The last thing you do with the function is what it returns
as.factor (age_underscore)
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A\ The last thing you do shouldn’t be assignment <-

The last thing that a function does is what it returns. If we take our
example above and change the last line to assign to some variable, then
the function will not return anything!

# The name of the function
clean_age_groups <- function(age_groups){ # The argument - age_groups

# The body of the function
age_underscore <- str_replace_all(
string = age_groups,
pattern =
replacement = "_"

)

>

# The last thing you do with the function is what it returns
factored <- as.factor(age_underscore)

}

clean_age_groups("10--11")

This is a pretty common mistake, one I still make-something to be aware
of!

The way to fix this is to make sure that the last thing you do isn’t
assigned. So, our example above should look like so:
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# The name of the function
clean_age_groups <- function(age_groups){ # The argument - age_groups

# The body of the function
age_underscore <- str_replace_all(
string = age_groups,
pattern = "
replacement = "_"

)

n
H)

# The last thing you do with the function is what it returns
# NOT THIS

# factored <- as.factor(age_underscore)

# THIS

as.factor(age_underscore)

}

clean_age_groups("10--11")

[1] 10_11
Levels: 10_11

6.10 How to think about writing functions

There are many ways to start writing functions.

Fundamentally, it is about identifying inputs and outputs.

One useful approach, I think, is to identify the outputs before the inputs:

1. The output. What one thing do you want this function to return?
2. The input. What (potentially many) thing(s) go in to this.

This “gestalt”, or top-down approach isn’t how it always needs to be done.
But I think it helps you identify the thing you need first, which can help
guide you.
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6.10.1 Identifying the output - what do we need?

It might feel a bit like putting the cart before the horse, but I think there is
a nice advantage to thinking about the output first: you focus on what you
want the function to do.

In the case of our clean_age_groups function, we want to get values like
“15_19” that are factors.

6.10.2 Identifying the input

So now we have a clear idea of what we need - we can now clarify what we
have, which in our case earlier, was some contact data

contact

# A tibble: 6 x 3
location age_groups n_contacts

<chr> <chr> <dbl>
1 QLD 15-19 100
2 NSW 15--19 125
3 QLD 20--24 150
4 NSW 20-24 200
5 QLD 25---29 225
6 NSW 25-29 250

Where we want to focus on age groups, and take inputs like
c("15-19", "15--19")

[1] "15-19" "15--19"
And then turn them into:
c("15_19", "15_19")

[1] "15_19" "15_19"

Breaking things down like this means we can focus on a really small example
of the thing we want, which makes the problem easier to solve.

There are many ways to manage turning strings into other strings, and I like
to use the stringr package to do this. We can use the str_replace_all
function. So I'll start by scratching up some inputs like so, and seeing if this
works
ages <- c("15-19", "15--19")
str_replace_all(

string = ages,

pattern = "-",
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replacement = "_"

)

[1] "15_19" "15_ 19"

Not quite what I'm after - I'’ve got two underscores when I want just one.

6.10.2.1 Iteration: Writing functions is writing

I didn’t get this right the first time - and I rarely do! The point I want to
make here is:

Writing functions is just like writing. It takes iteration.
We have incidentally replaced every - with _, which means -- becomes __.

Let’s change that by using | in the “pattern” argument, which allows us to
specify —|--, which means, - OR --:
ages <- c("15-19", "15--19")
str_replace_all(
string = ages,
pattern = "-|--",
replacement = "_"

)

[1] "15_19"™ ™15__19"

OK, the same problem. We actually need to flip the order here, so we change
-- first:
ages <- c("15-19", "15--19")
str_replace_all(
string = ages,
pattern = " =
replacement = "_"

)

[1] "15_19" "15_19"

Great! Now let’s put that into the body of the function, and give the func-
tion a good name.

clean_age_groups <- function(age_groups){
str_replace_all(
string = ages,
pattern = "—-|-",
replacement = "_"

)
}
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clean_age_groups (ages)

[1] "15_19" "15_19"

It’s a useful process to scratch out a function like this. As you get more
confident with this, you will start to be able to write the code as a function
first, and then iterate in that way.

beware copying and pasting into functions

The process of writing a function out in scratchings as we’ve done, is
that we can leave some scraps in the code. In this case, I've actually left
the ages object in the function, but the argument is age_groups:

clean_age_groups <- function(age_groups){
str_replace_all(
string = ages,
pattern = "
replacement = "_"
)
}

—
B

clean_age_groups (ages)

[1] "15_19" "15 19"

Notice that this still works! This is because the ages object still exists
as a variable I've created. But if we try another input, we’ll get some
strange output:

clean_age_groups(c("10-12", "10--12"))

[1] "15_19" "15_19"

So, make sure to clean up after you’ve copied and pasted - remember to
check the arguments match how they are used in the function.

And on that note, let’s redefine clean_age_groups correctly so we don’t
get an error later on (which happened during the development of the

book)

clean_age_groups <- function(age_groups){
str_replace_all(
string = age_groups,
pattern = "
replacement = "_"
)
by

=0
>

clean_age_groups (ages)
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[1] "15_19" "15_19"

6.10.3 Managing scope - functions are best (generally) when
they do one thing

Also, note that we wrote clean_age_groups to just focus on converting input

like “10-12” into “10__12". We could have instead focussed on cleaning up the
data frame, like so:

contact

# A tibble: 6 x 3
location age_groups n_contacts

<chr> <chr> <dbl>
1 QLD 15-19 100
2 NSwW 15--19 125
3 QLD 20--24 150
4 NSW 20-24 200
5 QLD 25---29 225
6 NSW 25-29 250

clean_age_groups_data <- function(data){

tidy_contact <- data |>
mutate (
age_groups = str_replace_all(
string = age_groups,
pattern = "———|-——|-",
replacement = "_"
D¢
age_groups = as.factor(age_groups)

)

tidy_contact
¥
clean_age_groups_data(contact)

# A tibble: 6 x 3
location age_groups n_contacts

<chr> <fct> <dbl>
1 QLD 15_19 100
2 NSW 15_19 125

3 QLD 20_24 150
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4 NSW 20_24 200
5 QLD 25_29 225
6 NSW 25_29 250

I think there are a couple of issues with this:

1. We assume the age groups column is always age_groups

2. The scope is now larger - we are always working with data and
returning data

3. We haven’t necessarily made the expression easier.

It is fine to wrap up the existing function into another function that cleans
the data - to me this better encapsulates and expresses the ideas:

contact

# A tibble: 6 x 3
location age_groups n_contacts

<chr> <chr> <dbl>
1 QLD 15-19 100
2 NSwW 15--19 125
3 QLD 20--24 150
4 NSW 20-24 200
5 QLD 25---29 225
6 NSW 25-29 250

clean_contacts <- function(data){

data |>
mutate (
age_groups = clean_age_groups (age_groups)

)
}

clean_contacts(contact)

# A tibble: 6 x 3
location age_groups n_contacts

<chr> <chr> <dbl>
1 QLD 15_19 100
2 NSW 15_19 125
3 QLD 20_24 150
4 NSW 20_24 200
5 QLD 25__29 225
6 NSW 25_29 250

Some of the improvements I notice
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e We are just focussing on cleaning up the age group column.
e We have given it a name that refers to cleaning up the data, which might
also give us some space and room to add more cleaning function here.

6.11 When to function
One of my overall points with functions is:
functions help you express your intention.

However, there are some generally good heuristics to follow to help guide you
towards writing a function. Generally, it is time to write a function if:

1. You’ve copied and pasted the code 3 or more times.
2. You've re-read your code more than 3 times.
This first principle is often called DRY - “Don’t Repeat Yourself.

The second principle has been coined by Miles McBain, also as DRY, or pos-
sibly DRRY: Don’t ReRead Yourself.

6.12 Naming things is hard

There are only two hard things in Computer Science: cache invalidation
and naming things.

— Phil Karlton

What does this function do?

myfun <- function(x){
(x * 9/5) + 32

}

Converting temperature?

temperature_conversion <- function(x){
(x * 9/8) + 32

}

Clearly state input_to_output ()

celcius_to_fahrenheit <- function(x){
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(x * 9/5) + 32
}

Name argument and intermediate variables

celcius_to_fahrenheit <- function(celcius){
fahrenheit <- (celcius * 9/5) + 32
fahrenheit

}

What, what does make functions hard?

celcius_to_fahrenheit <- function(celcius){
(celcius * 9/5) + 32
}

Identifying inputs and outputs is hard.

But what is hard it taking code, (like the code in a data analysis) and finding
the parts that need to change

There’s a level of “I got it to work” and there’s a level of “It works, and I
can reason about it”

— Joe Cheng You have to be able to reason about it | Data Science
Hangout

I can reason about it

..how do you take all this complexity and break it down into smaller
pieces...each of which you can reason about...each of which you can hold
in your head..each of which you can look at and be like “yup, I can fully
ingest this entire function definition, I can read it line by line and prove
to myself this is definitely correct...So software engineering... is a lot about
this: How do you break up inherently complicated things that we are
trying to do into small pieces that are individually easy to reason
about. That’s half the battle..The other half of the battle is how do we
combine them in ways that can be reliable and also easy to reason about


https://youtu.be/J8qbRYa4430?si=GnCpXk_Go7_PzOJa&t=2380
https://youtu.be/J8qbRYa4430?si=GnCpXk_Go7_PzOJa&t=2380
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6.13 The other hard part of writing functions

i Practice naming things

Give names to the following functions:

thingy <- function(x){
x"3
¥

bobby <- function(x){
str_replace_all(
string = x,
pattern = """,
replacement = '"'

)
by

f <- function(x) {

ux <- unique(x)

ux [which.max(tabulate(match(x, ux)))]
}

Generally speaking, it is good to following a naming convention of some kind,
and also to keep the names descriptive:

# good

fit_1mQ)

fit_cart()

fit_glm()

# less good - tab complete isn't as good, unless we have a lot of functions also named "ln
Im fit()

cart_fit()

glm_£fit ()

# bad
f1m()
fcart ()
fglm()
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6.14 Conclusion
The process of writing a function is:

o Identify outputs and inputs

o Identify the complexity to abstract away

o Writing functions is iterative, Just like regular writing

¢ Naming things is hard. Focus on making “slightly better” names.

On a final note, I think it’s worthwhile thinking about the iteration - and the
idea of moving from a skateboard to a car, rather than building the car:

(heard via Stat545 functions chapter)


https://stat545.com/functions-part1.html
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Motivation

We’ve gone through a lot of setup, and now we're going to start building an
R package. Soon. But we need to have some motivation, first. It involves a bit
of a story, and a bit of imagination.

7.1 Overview

¢ Teaching 30 minutes
o Exercises 10 minutes

7.2 Questions

« How to convert code into functions?

7.3 Objectives

e Start to wrangle with a script to turn it into functions

7.4 How this works

One of my big goals with teaching functions, and with teaching R packages,
is that I want the examples to be somewhat rooted in the familiar and the
real. There are really useful toy examples of writing packages that deliver
praise (e.g., ones I've used to teach R packages in the past: https://github.
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com/njtierney /praiseme), or do simple conversions between units (celcius to
farenheit being a very common example).

These examples are useful because they teach you the tools, and the process.
However in this course, I want to focus on a bit more than this and incorporate
the process of turning code into functions. I think this is important, because
it more closely represents other examples we come across in using R, and
presents a bit of a richer learning journey, because in addition to learning
about the tools and the process of R package building, you will also learn:

e How to think about converting scripts to functions
o How to write better functions

I have written up some example code, which starts as a quarto document.
We are going to take this document, and then eventually turn it into an R
package.

The structure of this exercise has taken inspiration from “The package within”
chapter from R Packages.

7.5 The example: “learned”

We are going to be looking at a role-play situation where we imagine we are
at some fictional workplace, where part of our job is to look at education data
that we have acquired from some source. The overall goal of our job here is
to produce some key outputs from some data.

You can see this example at: https://github.com/njtierney/learned

To download it, run the following code

library(usethis)
use_course("njtierney/learned")

(]
1 Your turn

1. Download the repository using the code above

2. Render the document, “analysis2014.qmd”

3. Read over the document, thinking about what we discussed
in Why functions.

4. Identify some potential problems with the code

5. Think about what might happen if we want to read in data
from 2015 (or later years), how would you like to do this?



https://github.com/njtierney/praiseme
https://github.com/njtierney/praiseme
https://r-pkgs.org/package-within.html
https://r-pkgs.org/package-within.html
https://github.com/njtierney/learned
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7.6 Discussion of potential problems

After you've taken from time to think about some of the potential problems,
open the box below

O Some of the potential problems

e Copying and pasting a document could lead to errors

e What if the data changes?

e What if other people collaborate on this project? How do they have
the source of truth?

e Is there a way to formalise this all?

7.7 Identifying the report outputs

To get us started with some key things, let’s think about what the key outputs
of this report are.

(]
1 Your turn

1. Identify the key outputs of the report
2. Pick one of those key outputs and start to write out a function
for it

9 Key outputs

”

They key outputs are related to the “Produce a ..” steps of the docu-

ment:

1. Produce a plot of the proportion of people educated in
each age group in each state

2. Produce a box plot of proportion of people educated for
each state.

3. Produce a table of The 5 number summary (min, 1st quan-
tile, median, 3rd quantile, max) of proportion of people
educated for each state.

So now we know where we are headed - we want to write some functions that
produce these plots and tables.
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However, the main problem that we encountered was that there was actually
a bit of data cleaning that needed to happen before we did this. Let’s focus
on cleaning up and rearranging the quarto document first to identify the data
cleaning steps required.

(3
1 Your turn

1. Open, “alpha-analysis2014.qmd”

2. Move all the “data quality” checks into a new section called
“data quality”

3. Move all of the data cleaning code up to the
top, so we just work with one data set, named
tidy_age_state_education_2014

4. Create two functions to clean the data:

1. tidy the age groups
2. remove the missing values

5. Put these two functions into another function that does the

data cleaning

7.8 Discussion of data cleaning function implementations

¢ Discuss “solutions-alpha-analysis2014.qmd”

7.9 Applying functions to give the outputs

We've got some data cleaning functions! Now let’s see if we can capture the
intention of the plots, and wrap these up into functions, too.

The overall idea here is that we can capture the overall intention of what we
are doing in a concise way, that is easy to reason with. That is not to say
that it is just smaller, but being easy to reason with is key here.

o
1 Your turn

1. Open, “bravo-analysis2014.qmd”
2. Write a function for each of the following:

1. Bar plot of proportion of people educated by state and
age
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2. Boxplot of proportion of people educated for each
state
3. Table of 5 number summary of proportion of people
educated for each state
3. Move all these functions to the top of the document into a
single code chunk labelled “functions”
4. Move the “data checks” to the end of the document. We will
come back to this later
5. Make a “libraries” code chunk and put the library call in there

7.10 Discussion of plot and table, rearranging functions

¢ What do we notice now?

7.11 Moving towards a quasi-package.

We're slowly isolating the parts of the code that we care about, and now we're
going to make an incremental change again - to move all of the functions out
to an R folder, with one function per R file.

For those who are more familiar with R Packages, this might start to look
a lot more like an R package - while this isn’t the “standard” process, the
intention here is to demonstrate the key changes:

o Functions: Identifying points of expression / abstraction
o Clearly expressing functions
o Using functions to clearly articulate your work

@ ‘ergonomic’ / interactive helper packages

To do package development, we’re going to be using packages like
devtools and usethis. These packages are things we use in the console
- we use them interactively. They help us automate a lot of things, so
we can focus on the task at hand.

You can be almost guaranteed that we will use any functions from
devtools and usethis in the console. It’s OK for that to feel strange!
It will feel better soon.
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°
1 Your turn

1. Open “charlie-analysis2014.qmd”
2. Use use_r() from devtools/usethis to create a separate R
file for each of the R functions:
1. clean_age groups
2. clean_education data
3. plot_study age state
4. boxplot_ study_ state
5. summarise_ prop_ study
3. load all of these R functions, by calling source at the top of
the quarto document

7.12 Discussion

o Thoughts on this process?
e Shall we just get to the making the R package?
o See https://github.com/njtierney/learned /pull/1 for solution

Now, let’s move to making the R package!


https://github.com/njtierney/learned/pull/1
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Create the package!

It’s happening! We’re nearly there!

We’ve lined things up, now it’s time to start tearing down some walls, and
getting things ready to be an R package.

8.1 create_package(here))

Inside of the learned repository, run:

create_package(here: :here(), open = FALSE)

This says:

Create a package in this directory, and don’t open a new RStudio session,
please

You get a note that it does the following

Setting active project to
"/Users/nick/github/njtierney/learned".
Writing DESCRIPTION.

Writing NAMESPACE.

! Overwrite pre-existing file learmed.Rproj?

Personally, I recommend No, there’s not really a point to this in this instance.

Leaving learned.Rproj unchanged.

Adding "~“learned\\.Rproj$" to .Rbuildignore.
Adding "“\\.Rproj\\.user$" to .Rbuildignore.
Setting active project to "<no active project>".

There’s a bit to unpack here, you can see these new things have been created!
e See changes at this commit

There are three files added, which I’ll briefly discuss, and then we can move
on to more substantial matters of cleaning this directory up a little bit.
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8.1.1 DESCRIPTION file
My DESCRIPTION file looks like this, initially

Package: learned

Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000

AuthorsOR:

person("Nicholas", "Tierney", , "nicholas.tierney@gmail.com", role = c("aut", "cre"),

comment = c(ORCID = "https://orcid.org/0000-0003-1460-8722"))
Description: What the package does (one paragraph).
License: MIT + file LICENSE
Encoding: UTF-8
Language: en-GB
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.2

Essentially, this is a bunch of metadata about the package. It is a very critical
file to an R package, and we’ll come back to it later. For the moment, I think
there are two things worth noting:

1. It’s a bunch of metadata that is really important and specifically
formatted

2. The DESCRIPTION details here have my name and a few other
things set (like Language: en-GB), because of where we set this up
in installation.

8.1.2 .Rbuildignore

This lists files that we don’t want to package up when we eventually build our
R package.

This contains:

“learned\.Rproj$
“\.Rproj\.user$

Which are specific RStudio files. As you get further along in the package
building process, more files will be added to .Rbuildignore.

8.1.3 NAMESPACE

Another super critical file. We don’t touch it by hand. It gets updated auto-
matically via devtools and usethis. It looks like this currently:

# Generated by roxygen2: do not edit by hand
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8.2 Some housekeeping

We need to really tidy up this repository to be an R package. There is stuff
everywhere.

8.2.1 Move the data to data-raw

Let’s clean up all the existing data and move it into a special data-raw folder.
The data-raw folder exists in R packages as a place to hold original copies of
data that will eventually be cleaned up and shared in the data folder. For the
time being, we can store our data sets in here, and we’ll come back to it later.

°
1 Your turn

1. Run use_data_raw()
2. Move raw_education_2014...2019.csv into the newly cre-
ated data-raw folder

8.2.1.1 Running use_data_raw()
When we run use_data_raw(), we get a message like the following:

Setting active project to
"/Users/nick/github/njtierney/learned".
Creating data-raw/.

Adding "“data-raw$" to .Rbuildignore.

Writing data-raw/DATASET.R.

Modify data-raw/DATASET.R.

Finish writing the data preparation script in
data-raw/DATASET.R.

Use “usethis::use_data()™ to add prepared data
to package.

This is the usethis package’s way of telling us a couple of nifty things:
1. DATASET.R is a file it has created, this is where you document
changes to the data before it gets saved into the data folder

2. the data folder gets created with usethis: :use_data() - we will
come back to this.

A takeaway point from this is that the usethis package is quite chatty, and
quite helpful!

¢ You can see my initial commit of use_data_raw().


https://github.com/njtierney/learned/pull/2/commits/c47b00349c922411e207598a567f85226bc6b1b4
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8.2.1.2 Move CSVs into data-raw/

There’s a few ways to do this, personally, I just use RStudio’s file interface
and move the files around. - Here’s what that commit looks like. Note, that
this is effectively a renaming, so there’s not much going on in this commit.

8.2.2 Delete old quarto files, move one into vignettes

We don’t need the alpha-bravo-charlie of it all anymore, we can just stick with
one. We're going to move it to a special folder called a “vignette”. We're going
to shelve it there for a little bit.

i Your turn

1. Delete “analysis2014.qmd” and associated HTML/folders

2. Delete “alpha-analysis2014.qmd” and associated
HTML/folders

3. Delete “bravo-analysis2014.qmd” and associated
HTML/folders

4. (potentially move “solution-charlie-analysis2014.qmd”) into
root level and delete “charlie-analysis2014.qmd”)

5. Delete “solutions” folder

6. run use_vignette("analysis-2014")

8.2.2.1 deleting old files

Here’s the commit of deleting and moving files, and deleting solutions folder

e commit deleting and moving files
e commit deleting solutions folder

8.2.2.2

Creating quarto vignettes

Once we run

use_vignette("analysis-2014")

We get another nice chatty message from usethis:

Adding knitr to Suggests field in DESCRIPTION.
Adding "inst/doc" to .gitignore.

Adding rmarkdown to Suggests field in
DESCRIPTION.

Adding "knitr" to VignetteBuilder.

Creating vignettes/.

Adding "*.html" and "*.R" to
vignettes/.gitignore.



https://github.com/njtierney/learned/pull/2/commits/05720d1bcedc177905f71ebbb4a994b83f6da9e0
https://github.com/njtierney/learned/pull/2/commits/fd74956d7fe7326b1e2c81f546b2a0086b65275e
https://github.com/njtierney/learned/pull/2/commits/c1aac99ffdc7b1261116180bdd504b8236d4e660
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Writing vignettes/analysis-2014.Rmd.
Modify vignettes/analysis-2014.Rmd.

You can see the commit for this

Note that although we started with a Quarto vignette, it opened an Rmark-
down vignette. It is actually possible to use a quarto vignette - as described
in the Quarto R package.

And, just because I want this to be more on the side of bleeding-edge erring
to timeless, we're going to do that.

There’s a few steps, so hold on.

8.2.2.2.1 wupdate VignetteBuilder

Open the DESCRIPTION file, and replace knitr with quarto in
VignetteBuilder.

e commit

Then, copy our “solution/charlie-analysis.qmd” file into vignette folder
e commit

Then, add some of the appropriate metadata into the quarto YAML:

e commit

Finally, delete the other Rmd file, and rename ours “analysis-2014.qmd”
e commit

It’s worthwhile noting that this vignette in its current state will not build
properly, but we will get to it later.

8.3 Build/install the package

Now, we have a package! This will actually build, and installl Although we
still need to do a few things to make it useable, it’s worthwhile celebrating
the small steps!

°
1 Your turn

Build the package by navigating to the “build” pane in the top right:


https://github.com/njtierney/learned/pull/2/commits/4da0a62bb704591ae62d6104e38b6c6d24b6a088
https://cran.r-project.org/web/packages/quarto/vignettes/hello.html
https://github.com/njtierney/learned/pull/2/commits/e1b0f8b7fbc9a980e2f1bba692bdf1c79dd454ad
https://github.com/njtierney/learned/pull/2/commits/dcd99c067e1d8606a4771ef5afa8c4cef21f1511
https://github.com/njtierney/learned/pull/2/commits/fabf10bada36913c5a3045f0f754cc166820510e
https://github.com/njtierney/learned/pull/2/commits/ec15dcf145ac58492a781d4380ba738f1f40dfea

66 8 Create the package!

History Connections Build Git Tutorial

2 Install + = Test 7| Check {g} More ~

j’/‘ Clean and Install

~ Install Package

& Configure Build Tools...

Click this, and see some text like the following appear!
==> R CMD INSTALL --preclean --no-multiarch --with-keep.source learned

* installing to library ¢/Users/mick/Library/R/arm64/4.4/library/_build’
* installing *source* package ‘learned’

** using staged installation

*% R

** byte-compile and prepare package for lazy loading
No man pages found in package ‘learned’

** help

**%* installing help indices

** building package indices

** installing vignettes

** testing if installed package can be loaded from temporary location

** testing if installed package can be loaded from final locat{ion

** testing if installed package keeps a record of temporary installation path
* DONE (learned)

Let’s celebrate this win, and also wrap up this long section on a slight
clifthanger: let’s try using our package.

8.4 The workflow of package development.
One of the major workflows during R package development is this:
1. Edit R functions

2. load_all() (or keyboard shortcut Ctrl/Cmd+Shift+L)
3. Edit R functions.
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@ Cheatsheets

There is a great cheatsheet for package development that I had stapled
to my cubicle wall during my PhD. The website now is very useful, but
make sure to check out the PDF.

Let’s try out our R package. To do this, I'm going to recommend you create
a special R file, sometimes called a “scratch file”. It lives inside a folder called
inst, which is typically not touched by R package building. This is a useful
trick if you want to have a way to play around with some R code, keeping it
inside your R package.

°
1 Your turn

Create a scratch file:

1. Create a directory inst

2. Inside that directory, create an R file called scratch.R (note

that this can actually be called anything, but scratch.R is

what T use)

Write library(learned) inside scratch.R

4. Read in the raw education 2014 data from data-raw,
and use one of the functions from the R package, like
clean_education_data(). What happens when you use this?

e

See the commit for this
If you're like me, I got this error:

> clean_education_data(raw_education_2014)
Error in mutate(data, age_group = clean_age_groups(age_group), prop_studying = na_if (prop_
could not find function "mutate"

Let’s pick this up in the next section, “How to use extra packages”

O This is a non-standard way of making an R package

This whole approach we have taken in this course, is not what I would
describe as “the standard way” to make an R package. This represents a
bit of a funny situation, where we have taken an existing workflow, and
then morphed things into an R package. The benefits to this are that it
is useful for teaching. And sometimes, this is how things happen.



https://rstudio.github.io/cheatsheets/html/package-development.html
https://rstudio.github.io/cheatsheets/package-development.pdf
https://github.com/njtierney/learned/pull/2/commits/5779d2b1ff7c4f5f87b4babdfe47ca608b6ebf3c
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How to use extra packages

One of the major shifts from writing R code and analyses to writing R packages
is how you interact with other R packages you want to use.

Normally, in an R script, when you want to use a function from, say, dplyr,
you use library(dplyr).

However, we do not ever want to call library(dplyr) inside a function in
an R package. The reason is to do with NAMESPACE conflicts. A popular
usecase of this is in the tidyverse R package - where we get this message
when we call 1ibrary(tidyverse).

library(tidyverse)

-- Attaching core tidyverse packages --————————---———————————- tidyverse 2.0.0 —-
v dplyr 1.1.4 v readr 2.1.5

v forcats 1.0.0 v stringr 1.5.1

v ggplot2 3.5.2 v tibble 3.2.1

v lubridate 1.9.4 v tidyr 1.3.1

vV purrr 1.0.4

-- Conflicts ————————————————————————— tidyverse_conflicts() --

x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to be

The conflict message at the bottom tells us that dplyr::filter() masks
stats::filter().

This is a key issue with package development - masking. If all R packages called
library (<package>) on every R package that they depended upon, then we’d
have SO MUCH masking. It’s almost considered rude or overbearing.

How do you NOT use library??

You say? The solution is to use what is called the “namespaced” form:
pkg: :fun().

For example, if I want to use filter from dplyr, I do so with:

cars |>
dplyr::filter(speed <= 4)

69



70 9 How to use extra packages

speed dist
1 4 2
2 4 10

So for every package we want to use a function from in an R package, we use
the “namespaced form”, e.g., dplyr::filter (). We also have to declare the
dependencies formally, which T’ll discuss now.

9.1 wuse_package(<pkg>) andpkg::fun()‘

So now we need to identify the packages that we use in our R package,
and then namespace them. We then formally add the dependency with:
use_package (<pkg>).

For example, looking at

boxplot_study_state <- function(data) {
ggplot (
data,
aes(
x = prop_studying,
y = state_territory
)
) +
geom_boxplot ()
}

We turn it into its namespaced form like so:

boxplot_study_state <- function(data) {
ggplot2: :ggplot (
data,
ggplot2: :aes(
x = prop_studying,
y = state_territory
)
) +
ggplot2: :geom_boxplot ()

}

And then call use_package():
use_package ("ggplot2")

Which gives us a nice chatty response from usethis:
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Setting active project to
"/Users/nick/github/njtierney/learned".

Adding ggplot2 to Imports field in DESCRIPTION.
Refer to functions with “ggplot2::fun() .

You can see this at this commit

(3
1 Your turn

1. Identify all the R packages used in learned
2. call use_package() on each of these packages
3. Namespace all the functions

See this commit for what you should end up with.

@ How many dependencies should you have?

My opinion is that you should depend on as many R packages as you
like! It’s far faster, I think, to depend on packages that get the job done,
and then maybe later trim back some dependencies and rewrite code.
My reasoning is that it is (generally) really cheap to add dependencies,
but more expensive (for my brain), to write them from scratch.

So, be greedy, add dependencies, then prune back.

9.2 Demo in scratch
Now that we’ve done this, let’s install the package, and then go to scratch.R
I then get this error:

> clean_education_data(raw_education_2014)
Error in clean_education_data(raw_education_2014)
could not find function "clean_education_data"

However, if we do load all, with:

load_all(".")

Then it works!

But what gives with the function not being available? Let’s have a look inside
learned by using : ::

There’s nothing in there! Now let’s focus on getting that working, which will
involve learning about documenting our code!


https://github.com/njtierney/learned/pull/2/commits/4b93e0f4754fa00f405a519be2abe8ba91214efe
https://github.com/njtierney/learned/pull/2/commits/2019478ac9a1e868aa173f316d2cc9eccacefbba
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O The tidyverse package is not a dependency in packages

Because the purpose of the R package tidyverse is only really to load
other R packages, it does not contain functions. Don’t put tidyverse
in imports.

@ Managing conflicts in scripts with conflicted

Outside of the R package development world, it’s a good idea to proac-
tively manage function conflicts. Lest you use stats::filter () instead
of dplyr::filter()

See the conflicted R package for more on this idea.

@ Some other ideas

e Imports vs Depends. We only really use Imports. Don’t use Depends
unless you’re building an extension package, e.g., something that works
with ggplot2, where it doesn’t make sense to have the package without
geplot2. Depends is like having library(pkg). Generally, don’t do it.

e It’s usually a good idea to state package versions after their name in
Imports. Find out the package name with packageVersion("pkg").
Generally onlt do >=, and not == and never <



https://github.com/r-lib/conflicted
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Add documentation

So we noticed that there was nothing in learned when we looked at it -
the reason is that we need to export the functions. To do this, we need to
document our functions using roxygen?2.

In short, roxygen2 provides us with nifty syntax to give documentation to
our functions, which also allows them to be exported.

Let’s demonstrate with boxplot_study_state.R:

It starts like this:

boxplot_study_state <- function(data) {
ggplot2: :ggplot(
data,
ggplot2: :aes(
x = prop_studying,
y = state_territory
)
) +
ggplot2: :geom_boxplot ()
}

And we can add a “roxygen skeleton” by going to code > insert roxygen
skeleton (or with Alt/Option + Ctrl/Cmd + Shift + R) whilst our cursor is
in the function, and we get this:

#' Title

#I

#' Q@param data
#I

#' Qreturns

#' Qexport

#I

#' Qexamples
boxplot_study_state <- function(data) {
ggplot2: :ggplot (
data,
ggplot2: :aes(
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X
y

prop_studying,
state_territory

)
)+
ggplot2: :geom_boxplot ()
}

Which we can then populate:
#' Provide a boxplot of study data

#I

#' Q@param data data from education 2014
#I

#' Qreturns a ggplot object

#' Qexport

#I

#' Qexamples
#' # no example data yet
boxplot_study_state <- function(data) {
ggplot2: :ggplot(
data,
ggplot2: :aes(
x = prop_studying,
y = state_territory

)
) +
ggplot2: :geom_boxplot ()
}

We then call document (), which gives us the output:

Updating learned documentation
Loading learned

Writing NAMESPACE

Writing boxplot_study_state.Rd

This allows wus to look at the documented function with
?boxplot_study_state.

This function also gets added to the NAMESPACE file.
Here’s the commit of that
Note three things:

1. NAMESPACE now has boxplot_study_state.R in it
2. We have added some roxygen code


https://github.com/njtierney/learned/pull/2/commits/fb9ebdf5a958a38625b79e9bf95d6078090b8683
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3. There’s some LaTeX looking code in
man/boxplot_study_state.Rd

(3
1 Your Turn

1. Repeat this process for all the remaining functions in learned
1. add the roxygen skeleton
2. population the roxygen skeleton
3. run document ()

See this commit to see what this looks like when done.
So now we have some functions in our package! Woo!
For fun, try looking at the documentation with 7clean_age_groups

What’s missing from these functions? Examples! For examples, we need our
data! Let’s add that to the package.


https://github.com/njtierney/learned/pull/2/commits/831df1227f87ca8f6f4c810f3f9e1eeb100f9a4d
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Adding data to an R package

We want examples - and we want to show our data! So let’s add the raw
education 2014 data to the package.

To do this, we’re going to navigate back to the data-raw/DATASET.R file.

This file is effectively a data cleaning script - in our case, we’re just going to
read in the data, then use usethis: :use_data() on it to export it. Then we
will document the data.

11.1 Reading and exporting the data

Currently, our DATASET.R file looks like this:
## code to prepare "DATASET" dataset goes here

usethis: :use_data(DATASET, overwrite = TRUE)

Let’s read in the data and then export it, so it will look like this:

## 2015-04-10
library(readr)
raw_education_2014 <- read_csv("data-raw/raw_education_2014.csv")

usethis: :use_data(raw_education_2014, overwrite = TRUE, compress = "xz"

(compress = "xz" is a very efficient storage format)
Once again, usethis gives us a nice chatty response:

Setting active project to
"/Users/nick/github/njtierney/learned".
Adding R to Depends field in DESCRIPTION.
Creating data/.

Setting LazyData to "true" in DESCRIPTION.
Saving "raw_education_2014" to
"data/raw_education_2014.rda".

7
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Document your data (see
<https://r-pkgs.org/data.html>).

With a little note about documenting your datal

°
1 Your turn

1. Export the 2014 data, as described above

See this commit for a demonstration

To finish this off, we need to document the data. This looks like us creating a
new R file, that contains some information like this:

#' ABS Education data

#I

#' Some education data used for practicing building R packages.

#! Each row represents the number of people studying in a given age group in
#! a given state.

#I

#' O@format ## “raw_education_2014"

#' A data frame with 72 rows and 6 columns:

#' \describe{

#' \item{year}{The year of data - 2014}

#! \item{state_territory}{One of 8 states or territories}
#! \item{age_group}{age groups from 15 to 44}

#! \item{n_studying}{how many people are studying}

#' \item{population}{population in that state in that}

#'  \item{prop_studying}{proportion studying}

#' 3

#' Osource <https://www.who.int/teams/global-tuberculosis-programme/data>
"raw_education_2014"

I usually save this in R under something like data-<NAME>

°
1 Your turn

1. Document your data
2. Run document ()

See this commit for what this looks like.


https://github.com/njtierney/learned/pull/2/commits/e641652fb2e0d4aecf5e474654ecf4bddf13c8a9
https://github.com/njtierney/learned/pull/2/commits/2bb98e70f9e5793f0624a4bbdc099e8a73752510
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11.2 Improve our examples with our data

Now that we have some data easily accessible, we can go back and fix our
examples in documentation!

For example, in boxplot_study_state.R we can change

#' Qexamples
#' # no example data yet

To

#' Qexamples
#' boxplot_study_state(raw_education_2014)

See this commit

(3
1 Your turn

1. Add the example data to all functions in learned
2. run document ()

See this commit to see what this looks like.

11.3 A note on writing documentation and examples

Good examples, and good documentation really help the user experience. Re-
member that the user includes you (You are always collaborating with your
future self!). It’s worthwhile trying to put yourself in the shoes of a new learner,
and err on the side of slightly over explaining things.

It’s also worth noting that adding examples to data documentation is a great
idea as it helps people understand more about the data.

@ Extension

What would you change about the documentation to make it more
friendly to new users?



https://github.com/njtierney/learned/pull/2/commits/93f6824a503c43ad6fb7c1b4ebe8a6d6c5914e3d
https://github.com/njtierney/learned/pull/2/commits/c4991d09c763b43ee91cedfa4d27c2950772264d
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11.4 Next up

We're getting close now - let’s see if we can pass checks!



12
Passing Checks

Our package is really starting to grow up on us!
But it’s time to test it - we do this with devtools: :check()

This function runs all the general tests to see if our package can go onto
CRAN. There are usually a few more checks to run, but it’s mostly 95% of
the way there.

Essentially, devtools: :check() does the following:

e updates documentation

e loads the package

« builds the package (essentially puts it into machine code)
e creates vignettes

e runs tests, if there are any

e runs examples

It does usually take a minute or so to do, so it’s not something we run all the
time, but it’s a good idea to get into a habit of being somewhat regular about
the checks.

Let’s run devtools: :check() on learned

E creating vignettes (2.9s)
--- re-building ‘analysis-2014.qmd’ using html

processing file: analysis-2014.qgmd
We pretty quickly get an error!
Let’s take a full look at the vignette error:

E creating vignettes (2.9s)
--- re-building ‘analysis-2014.gmd’ using html

processing file: analysis-2014.qmd
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| 0%
| 5%
| 10% [libraries]
[ooo.e. | 147
[t | 19% [functions]
[P | 247
[t | 29% [read-datal
Error: '/private/var/folders/9c/k3wqmhhx4qsb3fd66n4prhlw0000gq/T/RtmpBzprFu/Rbuild39747

Quitting from analysis-2014.qmd:64-75 [read-datal

<error/rlang_error>

Error:

! '/private/var/folders/9c/k3wqmhhx4qsb3fd66n4prhlw0000gq/T/RtmpBzprFu/Rbuild397478babc

Backtrace:

1. readr::read_csv(here("raw_education_2014.csv"))

2 vroom: :vroom(. ..)

3. vroom: : :vroom_(...)

4. wvroom (local) “<fn>"("/private/var/folders/9c/k3wqmhhx4qsb3fd66n4prhlw0000gq/T/Rtn
5 vroom: : : check_path(path)

OK, so the issue is that we are reading in the CSV in a non standard way.
But, now that we have the data built in to the package, we don’t need to
worry about this.

In

fact, looking at the vignette now, there’s a few things going on!

°
1 Your turn

1. What do you think we need to fix in this vignette to get it to
run?

2. Have a go at cleaning up the functions, the data read ins, and
see if you can get devtools::check() to pass building the
vignettes

We resolve this at this commit.


https://github.com/njtierney/learned/pull/2/commits/e0a2f5ee76af424f6a13a99011518608a7932498
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12.1 Check can sometimes open a can of worms

Even as an experienced package developer, once I fixed the above, I still had
quite a few things to fix. Let’s walk through these.

12.1.1 Introducing a new error
We also introduce a new error:

checking package dependencies ... ERROR
VignetteBuilder package not declared: ‘quarto’

See section ‘The DESCRIPTION file’ in the ‘Writing R Extensions’
manual.

Which I believe is fixed by adding quarto to Suggests - done in this commit.

This can also be done with:

use_package ("quarto", type = "Suggests")

e Suggests is a place where you put packages that are used in your vignettes,
but not your package.

12.1.2 More errors, warnings, notes

Doing that, and running check () we now get a bit more of a can of worms of
errors, warnings, and notes:

checking re-building of vignette outputs ... ERROR
Error(s) in re-building vignettes:
—--- re-building ‘analysis-2014.qmd’ using html

processing file: analysis-2014.gmd
Error in library(naniar) : there is no package called 'naniar'
Calls: .main ... withCallingHandlers -> withVisible -> eval -> eval -> library

Quitting from analysis-2014.qmd:35-39 [libraries]
<error/rlang_error>

Error in “library() ~:

! there is no package called 'naniar'

Backtrace:


https://github.com/njtierney/learned/pull/2/commits/6da2ab6ef280b12b3ee7e86d32a96712598be4fe
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Execution halted

Error: processing vignette 'analysis-2014.qmd' failed with diagnostics:
Error running quarto cli.

Caused by error:

! System command 'quarto' failed

—--- failed re-building ‘analysis-2014.qmd’

SUMMARY: processing the following file failed:
‘analysis-2014.qgmd’

Error: Vignette re-building failed.
Execution halted

checking DESCRIPTION meta-information ... WARNING
Invalid license file pointers: LICENSE

checking R code for possible problems ... NOTE

boxplot_study_state: no visible binding for global variable
‘prop_studying’

boxplot_study_state: no visible binding for global variable
‘state_territory’

clean_education_data: no visible binding for global variable
‘age_group’

clean_education_data: no visible binding for global variable
‘prop_studying’

plot_study_age_state: no visible binding for global variable
‘prop_studying’

plot_study_age_state: no visible binding for global variable
‘age_group’

summarise_prop_study: no visible binding for global variable
‘state_territory’

summarise_prop_study: no visible binding for global variable
‘prop_studying’

summarise_prop_study: no visible global function definition for
‘quantile’

summarise_prop_study: no visible global function definition for
‘median’

summarise_prop_study: no visible global function definition for ‘sd’

Undefined global functions or variables:
age_group median prop_studying quantile sd state_territory

Consider adding
importFrom("stats", "median", "quantile", "sd")
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to your NAMESPACE file.

checking for unstated dependencies in vignettes ... NOTE
'library' or 'require' call not declared from: ‘naniar’

1 error | 1 warning | 2 notes
This all looks a bit intense. It’s OK. We will get through.
Start by tackling the ERRORs.

12.1.3 Packages used in vignettes have to be declared in Sug-
gests

This error

checking re-building of vignette outputs ... ERROR
Error(s) in re-building vignettes:
--- re-building ‘analysis-2014.qmd’ using html

processing file: analysis-2014.gmd
Error in library(tidyverse) : there is no package called 'tidyverse'
Calls: .main ... withCallingHandlers -> withVisible -> eval -> eval -> library

Quitting from analysis-2014.qmd:35-41 [libraries]
<error/rlang_error>

Error in “library() ":

! there is no package called 'tidyverse'

Backtrace:

Execution halted

Error: processing vignette 'analysis-2014.qmd' failed with diagnostics:
Error running quarto cli.

Caused by error:

! System command 'quarto' failed

--- failed re-building ‘analysis-2014.qgmd’

SUMMARY: processing the following file failed:
‘analysis-2014.qgmd’
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Error: Vignette re-building failed.
Execution halted

We actually don’t need some of these packages anymore - so let’s remove
tidyverse, and here

Then, doing that, we still get a similar error, but just for the “naniar” package.

We can resolve this by doing

use_package("naniar", type = "Suggests")

This works!
That puts at at this commit
We now have this state

checking DESCRIPTION meta-information ... WARNING
Invalid license file pointers: LICENSE

checking R code for possible problems ... NOTE

boxplot_study_state: no visible binding for global variable
‘prop_studying’

boxplot_study_state: no visible binding for global variable
‘state_territory’

clean_education_data: no visible binding for global variable
‘age_group’

clean_education_data: no visible binding for global variable
‘prop_studying’

plot_study_age_state: no visible binding for global variable
‘prop_studying’

plot_study_age_state: no visible binding for global variable
‘age_group’

summarise_prop_study: no visible binding for global variable
‘state_territory’

summarise_prop_study: no visible binding for global variable
‘prop_studying’

summarise_prop_study: no visible global function definition for
‘quantile’

summarise_prop_study: no visible global function definition for
‘median’

summarise_prop_study: no visible global function definition for ‘sd’

Undefined global functions or variables:
age_group median prop_studying quantile sd state_territory

Consider adding
importFrom("stats", "median", "quantile", "sd")

to your NAMESPACE file.


https://github.com/njtierney/learned/pull/2/commits/c3147f46be1cac27fe82770d51ceabfdb805b0b1
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0 errors | 1 warning | 1 note

12.1.4 Addressing the warning

checking DESCRIPTION meta-information ... WARNING
Invalid license file pointers: LICENSE

Let’s look at the DESCRIPTION file, and at the License section
It says:
License: MIT + file LICENSE

We didn’t initialise the License properly, so we run

use_mit_license()

Which gives us

Writing LICENSE.
Writing LICENSE.md.
Adding "~“LICENSE\\.md$" to .Rbuildignore.

checkpoint this commit

12.1.5 The NOTES
Running Check again, we are down to the NOTEs:

checking R code for possible problems ... NOTE

boxplot_study_state: no visible binding for global variable
‘prop_studying’

boxplot_study_state: no visible binding for global variable
‘state_territory’

clean_education_data: no visible binding for global variable
‘age_group’

clean_education_data: no visible binding for global variable
‘prop_studying’

plot_study_age_state: no visible binding for global variable
‘prop_studying’

plot_study_age_state: no visible binding for global variable
‘age_group’

summarise_prop_study: no visible binding for global variable
‘state_territory’

summarise_prop_study: no visible binding for global variable
‘prop_studying’

summarise_prop_study: no visible global function definition for
‘quantile’

summarise_prop_study: no visible global function definition for


https://github.com/njtierney/learned/pull/2/commits/d179339cd76fbe93cf560231659d925d4719e4e1

88 12 Passing Checks

‘median’
summarise_prop_study: no visible global function definition for ‘sd’
Undefined global functions or variables:

age_group median prop_studying quantile sd state_territory
Consider adding

importFrom("stats", "median", "quantile", "sd")
to your NAMESPACE file.

OK, so there’s two things here:

1. we forgot to namespace median, quantile, and sd
2. We need to deal with “Undefined global functions or variables:
age_group median prop_ studying quantile sd state_ territory”

The latter one is more painful, let’s deal with this.

Essentially, R is complaining because we use these variables inside dplyr code,
and it doesn’t know where they come from. My preferred way of dealing with
this is using a function called globalVariables. I usually do this inside a
centralised R function in what is called a “package doc file”.

We can create this file with:

use_package_doc ()

Which tells us:

Writing R/learned-package.R.

Modify R/learned-package.R.

Run devtools::document() to update package-level
documentation.

And then inside that file I put age_group median prop_studying quantile
sd state_territory. It ends up looking like this:

#' Qkeywords internal
" _PACKAGE"

## usethis mamespace: start
## usethis namespace: end
NULL

globalVariables(c(
"age_group",
"median",
"prop_studying",
"quantile",
negd" s
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"state_territory"

))

So now, let’s run document (), and then run check() again.

And now we are clear! This actually solved the other problem...which is a bit
mysterious, but that’s sometimes how it goes.

Here is the commit of this.


https://github.com/njtierney/learned/pull/2/commits/f70501dcbab48aae91e47351c4737691bb5bbc86
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Pushing it to GitHub

We've got all this locally, and that’s great, but let’s share it with the world!
If all went well with installation, then there are two steps to making this
available publicly.

1. Set up git
2. Push to github

13.0.1 wuse_git()
We can establish a git repository with:

use_git()

Which does:

o initialise a git repository

¢ asks you to commit files

e other setup

After this is done, we want to put it somewhere online. For our use case, we

want to use GitHub for this.

13.0.2 use_github()

The usethis package really does make our lives enormously easier here.
They’ve got a little handy function called use_github() which does the fol-
lowing key things:

e ensures the project uses git

o creates the repo on github

e pushes it to github

This saves us a bit of time, and honestly, feels like a bit of magic.

91
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@ Features of GitHub

There’s a lot of things about github! Let’s take some time to discuss the
following:

e issues

o releases

o milestones

e projects

What questions do you have about github from here?
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Adding a README file

Now that we’ve got our package onto github, let’s add a nice landing page, in
the form of a README file.

A README for a package should aim to answer the following questions:

e What is your package?
e Why should we use it?
e How do we use it?

We can set up the README with the following command:

use_readme_rmd ()

Which tells us the following:

Writing README.Rmd.

Adding "“README\\.Rmd$" to .Rbuildignore.
Modify README.Rmd.

Writing .git/hooks/pre-commit.

Essentially this means:

e Don’t add the README.Rmd when building the package

¢ Remember to edit the .Rmd (not the md file it creates)

e Adds a little note that will not let you just commit the README.Rmd
unless the README.md has been updated (this is called a pre-commit).

Here’s a commit of this

Essentially, the README.Rmd file allows us to demonstrate our package - in
a similar way to how we have a vignette.

Some good examples of R package READMEs:

e dplyr

e datapasta
e skimr

e magick

e visdat
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https://github.com/ropensci/visdat?tab=readme-ov-file#visdat-
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14.0.1 How to write the README, though?

Writing documentation can be a bit hard, but here are some general tips:

o Take the vignette, make it smaller.
o Take the examples, put them in there.
¢ Remember that done is better than perfect.

Here’s my (quick) commit of making a minimal README.Rmd

@ A common pitfall with README.Rmd

o Remember to add library(pkg) to your README
o Remember to build the package before you knit!
— You can do this with build_readme() (which builds the package
and knits the README file)



https://github.com/njtierney/learned/pull/2/commits/4be9bc46099156efe44d4f7b6d50de5a399ed4f4

15

Using tests

When writing your R package, a workflow often looks like:

o Write the code

e use load_all()

e test the input in the console
e change code

e load_all()

These local sanity checks are really important, but also benefit from being
formalised in a way so that they run every time you check your package.

This has the following benefits

o Confidence that if you change code you don’t break things
o Confidence from users that your code is robust

15.1 wuse_testthat()

To get started, we will run:

“use_testthat ()’

Which gives us

Adding testthat to Suggests field in DESCRIPTION.
Adding "3" to Config/testthat/edition.

Creating tests/testthat/.

Writing tests/testthat.R.

Call usethis::use_test() to initialize a basic
test file and open it for editing.

See this commit
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@ Your Turn

e What sort of tests do you think we should care about

15.2 Plan for writing tests

o re-examine data quality checks

e explain moving from less-formal to more formalised approach
o demonstrate testing dimensions/names

¢ demonstrate snapshot tests

expect_snapshot(clean_data(raw_education_2014))

o demonstrate vdiffr tests

set.seed(2025-04-11)
plot_name <- plot_code(data)

test_that("plot works", {
skip_on_cran()
skip_on_ci()
vdiffr::expect_doppelganger("plot_name", plot_name)
B

e Circle back to the data quality checks

¢ R packages can be used for other things than CRAN - although this does
maybe go against some ideas in this course, the R package structure can be

exploited to do some cool things - like perhaps data validation?

o R Packages vs Projects: Miles McBain https://milesmcbain.xyz/posts/an-

okay-idea/
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Adding a website

We’ve got our package written! Now let’s make it even more attractive to users
by making a fancy website.

This has now been made so easy thanks to pkgdown. Essentially, you run:

“use_pkgdown_github_pages() "

16.1 Package website tips

¢ look at other packages for inspiration on structure
e try to use a different default theme
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Using Continuous Integration

It’s nice to run tests and checks locally, but we can actually set things up to
happen automatically every time we psuh to GitHub.

To do this, run:

# (singular, not plural)
use_github_action()

And follow the prompts

o This is all much easier than it used to be
o Explain that there is a game of “watching the green lights”
o Explain test coverage

— see covr: :report ()
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Publishing your R package

o Places to publish packages
— github
— CRAN
— R Universe

18.1 github

o Ease of use
o slow
« Discuss risks of building/installing from github

18.2 CRAN

e A few barriers
o very stable, fast

18.3 R Universe

e similar to CRAN speed wise

e linked to github

o fewer barriers
https://docs.r-universe.dev/publish /set-up.html
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Next Steps

¢ R packages book
o official R docs
¢ rOpenSci docs

Submitting to CRAN
Submitting to JOSS
Submitting to rOpenSci
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¢ R packages book
o Hilary Parker’s blog post
e rOpenSci dev guide
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